Swinging those testing tools in F# -
Mikael Lundin

Abstract

F# is taking testing to another level by removing the ceremonial of setting up
hierarchies of testing classes and mocking frameworks. Instead it lets us focus on
what’s most important, the code we want to test. By utilizing expressive and
functional programming we swing those testing tools that makes test automation
ajoy, instead of repeated grudge it can be in C#.

Functional Programming and Testing

[heard of a guy who heard about a guy that shipped an application in Haskell.
Writing pure functions can be a challenge, but writing pure programs are
unbelievable hard.

Writing code in C# you spend a lot of time writing ceremonial code. One thing I
love about F# is that I can spend my time focusing on the problem at hand and
instead of writing cruft. Sometimes it ends up with a pure approach and
sometimes not. The important thing is to get the work done.

Convincing your manager that your new project is going to be F# can be a
challange. Who will maintain the code once you've gone to greener pastures? A
good way to get started writing F#, and kind of sneeking it in, is to write your
tests in F#. You can even test C# code using F# without any hassle, as they both
compile to the same IL code.

Here [want to show you some of the tools you can use to start flying into the
world of functional programming and testing.

F# interactive

One of the things lacking in C# is a REPL (read-eval-print loop). In F# itis a
natural thing to work with fsx, script files, and evaluating code in the F#
interactive before adding the code to an fs-file and compiling it into an
assembly.

// join " " ["Hello"; "FSharp"]
// => "Hello FSharp"
let join (separator : string) =
List.reduce (fun sl s2 -> sl + separator + s2)

Code Listing 1 - Function that joins a list of string together with a separator between words.

What I do when writing F# code is that [provide an example on how to execute a
function as a comment just before, so I can easily evaluate it with Alt+Enter and
also play around with the arguments.

Working this way interactivly with the REPL is one kind of testing that drives the
design of your code in more proactive way than test-first development ever will.
You can test out your functionality without even starting a debugger, and modify
the code until it fits all the scenarios that you can come up with during
development.

Xunit in F#

Testing functions interactivly through F# interactive will however not create a
reproducable result. It will not provide the security needed when you want to
refactor, like a great test suite will. Even if the functionality "works” you will still
need to write those unit tests to make sure it keeps on working.

What test runner is the best one, is a matter of personal preference. In C# [don’t
think it matters much as long as you stay away from MSTest, the Microsoft Unit
Test framework shipped with Visual Studio.

In F# there are some benefits of using Xunit, as it has a better extensibility story
it provides a better experience than NUnit.

[<Fact>]
let """ join should separate two string with a space™™ () =
Assert.Equal<string>("Hello FSharp",
join " " ["Hello"; "FSharp"])

Code Listing 2 - Using Xunit from F# looks pretty much the same as in C#.

The first thing you will notice when writing unit tests in F# is that you don’t need
a class to hold the tests. You can write them directly in a new FS-file or organize
them in different modules.

The second thing you will notice is that you can write natural language as the
test name, and won't have to use pesky camelcase or use underscore to delimit
words from one another.

This results in a much easier to read test suite and means alot when a test is
failing and you get the testname in clear text.

FsUnit

The testing story of F# starts to become really interesting when you take
functional programming into account. The FsUnit framework take advantage of
the forward pipe operator in order to make asserts more expressive.

[<Fact>]

let ““join should create a comma separated list " ()
join "," ["1"; "Mikael"; "Lundin"]
|> should equal "1,Mikael,Lundin"

Code Listing 3 - FsUnit let us express asserts in a more expressive way

FsUnit framework is not a test execution library but an assert library that will
help us write tests that are easy to understand from a glance.

It is also useful when we want to assert something in a new way. In this FsUnit
provides an easy extensibility model that will make new asserts trivial to
implement. Consider wanting to use regular expressions to assert on the test
result.

Consider the following test where match’ is an assertion that we’ve invented
ourselves. It takes a regular expression as and argument and matches that to the
join result.

[<Fact>]

let " join should separate words using space’ ™ () =
join " " ["lions"; "sleeps"; "tonight"]
|> should match' "\w+(\s\w+){2}"

Code Listing 4 - Should match' is an assertion that is not built into FsCheck, and it takes a regular
expression for matching

We implement this assertion in a few lines of code based on NHamcrest.

let match' p =
CustomMatcher<obj>(sprintf "Matches %s" p,
fun ¢ ->

match ¢ with
| :? string as str -> Regex.IsMatch(str, p)
| _ -> false)

Code Listing 5 - Implementation of a match' assertion that will assert result with a regular
expression.

With just a few lines of code we can extend the FsUnit assert library and create
our own asserts, making this a very powerful library for creating expressive
tests.

Unquote

Another impressive assertion framework for F# is Unquote. It takes advantage of
the quoted expressions feature of F#, evaluating one statement at a time until it
comes down to a primitive result.

@1 +2=3@>

val it : Quotations.Expr<bool> =
Call (None, op_Equality,
[Call (None, op_Addition, [Value (1), Value (2)]), Value (3)])

Code Listing 6 - A quoted expression returns the abstract syntax tree for the expression

Unquote provides tools for decompiling quoted expressions and evaluating
them, but first and mostly it provides the means of reducing a quoted expression
down to its primitive parts.

unquote <@ (3@ + 6) / 3 = (3 *7) -9 @

(30 +6) /3=3*7-9
36 / 3 =21 -9
12 = 12

true

val it : unit = ()

Code Listing 7 - Unquote will reduce both sides of the equal sign until the result is primitive

This becomes very useful in testing when tests are failing and it becomes tricky
to figure out what value what asserted to an expected value.

[<Fact>]
let """ join should ignore empty strings ™ () =
test < @join " " ["hello"™; ""; "world"] = "hello world" @>

Code Listing 8 - Using unquote in a Xunit test scenario

Test Explorer *yAX
[{: ~ Search P~
Run All | Run.. = | Playlist: All Tests

4 Failed Tests (1) StringUtilsTests.join should ignore empty strings

® StringUtilsTests join should ignore empty strings 66 ms Source: StringUtilsTests.fs line 48

P Passed Tests (14)
© Test Failed - StringUtilsTests,join should ignore empty strings

Message: StringUtils.join " " ["hello™; ""; "world"] = "hello world”
“hello world" = "hello world"
false

Elapsed time: 66 ms
4 StackTrace:
Operators.Raise[T](Exception exn)
StringUtilsTests,join should ignore empty strings()

Figure 1 - When the unquote test fails, it will present the complete reduction of the quoted code
expression

Having this tool around when working with F# code an especially algorithms and
calculations is invaluable. You can reduce statements directly from FSI or
evaluating code though FSX script files.

Mocking

What came first, mocking or dependency injection? When you need to unit test
some code that have external dependencies, you create a fake instance of that
dependency, sometimes called a mock or a stub, which you inject in order to
easily switch it out.

[usually call these test fakes, to avoid distinguish stubs from mocks, but basically
a stub is just something filling out the blanks and a mock is when we want to
assert on the actual interaction of the fake object.

The most trivial way of stubbing some data, is to send in a function as
dependency with the correct function signature. This method is fine to use in C#,
but often forgotten as it’s not a functional first programming language.

type Score = { Name : string; Score : int }

let getHighScore (csvReader : string -> string list list) =
csvReader "highscore.txt"
|> List.map (fun row ->
match row with
| name :: score :: [] ->
{ Name = name; Score = score |> int }
| _ -> failwith "Expected row with two columns")

|> List.sortBy (fun score -> score.Score)
|> List.rev

Code Listing 9 - Reading highscore from a text file and returning a list of Scores sortend in
descending order

Here the dependency is a function that takes the path to the CSV file as argument
and returns a string list list, simply a matrix of columns and rows.

One thing we can do in F# but not in C# is to create a type alias for the
dependency function. The closest we get to this in C# is the interface.

type CsvReader = string -> string list list

let getHighScore (csvReader : CsvReader) =
//

Code Listing 10 - We create an alias for the function signature and call it CsvReader

Writing the code to test this will not require us to introduce any mocking tools or
frameworks. We will simply supply a function that fulfills the function signature,
and that way fill the dependency of the function.

[<Fact>]
let " should return highscore in descending order™ " () =
// arrange
let getData (s : string) = [
["Mikael"™; "1234"];
["Jonas"; "321"];
["Bill"; "4321"]]

// act
let result = getHighScore getData

// assert
result |> List.map (fun row -> row.Score)
|> should equal [4321; 1234; 321]

Code Listing 11 - The getData function fulfills the function signature string -> string list list and will
act as dependency stub to CsvReader

Sometimes it is appropriate to work with interfaces, especially when you need to
bundle more functions and properties into one dependency.

type ICsvReader =
abstract member FileName : string
abstract member ReadFile : unit -> string list list

let getHighScore (csvReader : ICsvReader) =
csvReader.ReadFile()
//

Code Listing 12 - When you want to bundle functions and properties into a dependency, it is best to
use an interface

Traditionally when testing this in C# we would have to use a mocking framework
to create a fake ICsvReader or we would make a stub implementation of it. In F#
we can use object expressions to create an instance of this interface immediatly,
as long as we supply an implementation for all its members.

[<Fact>]
let " “should return highscore in descending order™ " () =
// arrange
let csvReader =
{ new ICsvReader with
member this.FileName = "highscore.txt"
member this.ReadFile () = [
["Mikael"; "1234"];
["Jonas"; "321"];
["Bill"; "4321"]]
}

// act
let result = getHighScore csvReader

// assert
result |> List.map (fun row -> row.Score)
|> should equal [4321; 1234; 321]

Code Listing 13 - With object expression we can create an instance of the ICsvReader interface by
supplying implementations for its members

There is a small bit of waste associated with this method, where FileName
member must be implemented, but is never actually used. This becomes
unmaintainable when dealing with really large interfaces.

Foq is a simple mocking framework that takes after Moq, but with some
functional elements. It will allow us to create fake objects where we only supply
an implementation for a part of an interface.

[<Fact>]
let " “should return highscore in descending order™ " () =

// arrange
let csvReader =
Mock<ICsvReader>()

.Setup(fun da -> <@ da.ReadFile() @>)
.Returns([["Mikael"; "1234"];
["Jonas"; "321"];
["Bill"; "4321"]])
.Create()

// act
let result = getHighScore csvReader

// assert
result |> List.map (fun row -> row.Score)
|> should equal [4321; 1234; 321]

Code Listing 14 - The Foq mocking framework allow us to create fake objects out of interfaces
without supplying implementations for all its members

The obvious benefits of using a mocking framework is that the coupling between
the test and the interface becomes less, meaning the test itself is less brittle in
terms of changes in the interface.

The syntax for mocking is as always a handful and may lessen the readability and
in long term maintainability of the test.

TickSpec
There is a very popular testing tool for C# called SpecFlow, which allows you to
create executable specifications out of a DSL called Gherkin.

TickSpec is the F# equivalent of this framework, and it uses some of the F#
features to make executable specifications an even smoother experience.

Consider the following feature file for Conway’s Game of Life.

Feature: Conway's Game of Life

Scenario 1: Any live cell with fewer than two live
neighbours dies, as if caused by under-population.
Given a live cell
And has 1 live neighbour
When turn turns
Then the cell dies

Scenario 2: Any live cell with two or three live neighbours
lives on to the next generation.

Given a live cell

And has 2 live neighbours

When turn turns

Then the cell lives

Scenario 3: Any live cell with more than three live
neighbours dies, as if by overcrowding.

Given a live cell

And has 4 live neighbours

When turn turns

Then the cell dies

Scenario 4: Any dead cell with exactly three live neighbours
becomes a live cell, as if by reproduction.

Given a dead cell

And has 3 live neighbours

When turn turns

Then the cell lives

Code Listing 15 - Gherkin is a DSL that structures your tests into specifications that are human
readable

The definition file we write that will make these specifications executable, can be
written in a way that is very bare bone and readable.

let mutable cell = Dead(@, 0)
let mutable cells = []
let mutable result = []

let [<Given>] ~“a (live|dead) cell” " = function
| "live" -> cell <- Live(@, 0)
| "dead" -> cell <- Dead(@, 0)
| _ -> failwith "expected: dead or live"

let [<Given>] "~ “has (\d) live neighbours? " (x) =
let rec _internal x =
match x with

_ -> failwith "expected: 4 >= neighbours >= 0"
<- _internal x

| @ -> [cell]

| 1 -> Live(-1, @) :: _internal (x - 1)
| 2 -> Live(1, @) :: _internal (x - 1)
| 3 -> Live(@, -1) :: _internal (x - 1)
| 4 -> Live(@, 1) :: _internal (x - 1)
|

s

cell

let [<When>] ~“turn turns™ ™ () =
result <- GameOfLife.next cells

let [<Then>] ~“the cell (dies]|lives) "~ = function
| "dies" -> GameOfLife.isDead (@, ©) result
|> should be True
| "lives" -> GameOfLife.islLive (@, 0) result
|> should be True
| _ -> failwith "expected: dies or lives"

Code Listing 16 - In SpecFlow we use attributes to match specifications to regular expressions. In
TickSpec we can use the definition name as a regular expression in itself

Compared to SpecFlow there is no code generation that needs to take place in
order to execute the specifications, which gives TickSpec a lower bar for
implementation. There is no need of a Visual Studio extension, we can just
import TickSpec with NuGet and start writing features and definitions.

TickSpec.Features.GameOfLifeFeature
Source: TickFactfs line 51
@ Test Passed - Scenario 1: Any live cell with fewer than two live neighbours dies, as if caused by under-population.
Elapsed time: 75 ms
Output

@ Test Passed - Scenario 2: Any live cell with two or three live neighbours lives on to the next generation.
Elapsed time: 46 ms
Output

@ Test Passed - Scenario 3: Any live cell with more than three live neighbours dies, as if by overcrowding.
Elapsed time: 47 ms
Output

@ Test Passed - Scenario 4: Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.
Elapsed time: 48 ms
Output

Figure 2 - We can run our tests without the need of code generation or a third part Visual Studio
plugin

Canopy

When it comes to web testing, Selenium has won the war against WatiN, which
was a port of the Ruby framework WatiR. However, Selenium does not provide a
very good functional API and this is the problem that Canopy tries to fix.

Canopy is a functional API on top of Selenium. A nice little tool that will let you
write shorter and more expressive web tests, without worrying about the details.

[<EntryPoint>]
let main argv =

start firefox
context "Mikael Lundin"
"should contain my name" &&& fun _ ->

// navigate
url "http://mikaellundin.name"”

// assert

"hl.name" == "Mikael Lundin"
run()
quit()

@ // return an integer exit code

Code Listing 17 - This code will open a firefox browser, navigate to start page and assert that
h1l.name contains my name

Canopy does not integrate to any existing testing frameworks. Instead you create
a new console application and run your tests directly from the compiled
executable.

C\Users\mikaellundin\Desktop\TestingWithFSharp_2\TestingWithFSharp.Web\.. ~ = n

ontext: Mikael Lundin

minutes 5 seconds to execute
passed

failed

Figure 3 - Canopy executes directly in a console application, not integrating to any external testing
framework

Canopy is able to create output that integrates into TeamCity so you can get test
output into your build server.

FsCheck
Up until this point you have not seen anything new. All that has been presented
are old technologies and methods utilizing a new format, the F# syntax.

F# has an equivilent framework to Haskell’s quicktest that has not been
generally available to the .NET languages before. FsCheck is a manifestation of
property-based testing with F# as a platform.

Property-based testing is a different approach to testing. Unit testing is a tool for
developing code, making sure that we can refactor code as we develop and
maintain an application.

Integration testing is meant to help us verify our code works together with
external systems, databases and services.

Executable specifications are white box tests, that will verify that the system
fulfills the specification, and resume regression in that the system keeps fulfilling
the specification even after the implementation has changed.

Manual testing is what we call exploration of the system. This is a creative task
where a human will make sure, not only that the system solves the problem it
was designed to solve, but also that it solved the right problem.

Where does property-based testing fit into this?

Property-based testing is exploration of the system, together with automation. In
property-based testing you setup a set of properties that always should be true
about the system, and then you explore it with data.

Let’s assume that we have a sorting function with an implementation like this.

// insort [2; 7; 4; 5; 3]
/] =>[2; 3; 4; 5; 7]
let insort list =
let rec _insert item = function
| [1 -> [item]
| hd :: tl when item < hd -> item :: hd :: tl
| hd :: t1 -> hd :: (_insert item tl)

list |> List.fold (fun acc item -> _insert item acc) []

Code Listing 18 - This function will sort a list of numbers by insertion sort algorithm

We can write a simple unit test that will cover all the lines of this function.

[<Fact>]
let "~ “insort should make a list of numbers ordered™ " () =
insort [6; 3; 7; 2; 4] |> should equal [2; 3; 4; 6; 7]

Code Listing 19 - This test completely covers the insort function

Even if this test technically covers the whole sorting function, is it really enough
to say that we trust insort to work without flaws? How many tests do we need to
write in order to feel that its covered?

Instead we could define a set of properties that always should hold true.

[<Property>]
let " “sorting once equals sorting twice’ " (1 : int list) =
insort 1 = insort (insort 1)

Code Listing 20 - A property is a piece of code that should be true for any data

A common property for a pure function like this, is that the result should be same
if running the same function again on the result. Our property could claim that
this should be true for any data.

0 TestingWithFSharp

Test Output-ListUti...sorting twice-35-1 # X

Test Name: ListUtilsTests.sorting once equals sorting twice
Test Outcome: @ Passed

Standard Output

Ok, passed 100 tests,

Figure 4 - When running the test, FsCheck will generate 100 data sets for the property to verify that
it holds true

Now we can start implementing some more interesting properties for our
function.

[<Property>]
let "~ first is smallest element™ "~ (list : int list) =
(not list.IsEmpty) ==
lazy(List.min 1list = List.head (insort list))

[<Property>]
let ““last is largest element ™ (1 : int list) =
(not 1.IsEmpty) ==
lazy(List.max 1 = List.head (List.rev (insort 1)))

[<Property>]
let rec " "is ordered result’” (1 : int list) =
let rec _ordered = function
| [] -> true
| hd :: [] -> true
| fst :: snd :: t1 ->
(fst <= snd) && (_ordered (snd :: tl))
_ordered (insort 1)

Code Listing 21 - The following properties should always be true for the sort function

We can supply conditions for when the property is true and we can also write
our own data generators to make sure that FsCheck generates appropriate data
for our properties.

The difference to ordinary unit testing is that we use properties to explore our
code, more than we use it to verify our code is working. By challanging our
solution with lots of data we will find the edge cases that might make our code
break in production.

Summary

Functional programming in F# changes the way we write code, and the way we
test. Testing becomes much more interactive by verifying our code in the REPL
before adding it to the compiled assembly.

With functional programming we are able to write code without side effects that
is easier to test, but not only that; F# rejuvinates the world of automated testing
by bringing some new frameworks and techniques to the table.

Testing with F# does not only allow you to test code written with F# but it also
stretches into any .NET solution and allow you to write testing code that is both
expressive and terse, allowing you to focus on what really matters - the
functionality of your solution.

With this [hope that next time you create a test project, you consider doing it in
F#.

Biography

Mikael Lundin is a software developer living in Malmo,
Sweden. He started programming in Pascal 20 years ago
and has been enjoying the craft both professionally and
as a hobby through languages and frameworks such as
PHP, C#, F#, Ruby, and Node. He has been a practitioner
and mentor of test-driven development and agile
methodologies for the last 8 years, helping teams

. succeed in delivering high-quality software.

Mikael has been working with F# for 4 years, providing
solutions to clients, publicly speaking about functional
programming, and having seminars for colleagues to

spread the word. He strongly believes that functional programming is the future
of delivering high-quality software.

Mikael Lundin is author of the book Testing with F# that was published 21
February 2015, by PACKT Publishing.

Testing with F#

http://amzn.com /1784391239

Samples of presentations by Mikael Lundin.

* (sv) Valtech Day 2012 - Funktionell programmering pa riktigt
https://vimeo.com/24819589

* (sv) Valtech .NET Day 2011 - Code Contracts
https://vimeo.com/16091425

* (sv) Valtech .NET Day 2011 - Testbara webbplatser
https://vimeo.com/15122562

* (sv) Interception med Castle DynamicProxy, Microsoft Unity eller

LinFu

o https://vimeo.com/15449390
o https://vimeo.com/15504788

